

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name				
Fundamentals of Chemical Engineering				
Course				
Field of study		Year/Semester		
Pharmaceutical Engineering Area of study (specialization)		3/5 Profile of study		
				-
Level of study		Course offered in		
First-cycle studies		polish		
Form of study		Requirements		
full-time		compulsory		
Number of hours				
Lecture	Laboratory classes	Other (e.g. online)		
15		0		
Tutorials	Projects/seminars			
0	15			
Number of credit points				
2				
Lecturers				
Responsible for the course/lectu	arer: Respons	sible for the course/lecturer:		
dr hab. inż. Grzegorz Musielak, p	prof. PP			
e-mail: grzegorz.musielak@put.	poznan.pl			
tel. 61 665 3698				
Wydział Technologii Chemicznej				
ul. Berdychowo 4, 61-131 Pozna	ń			
Prerequisites				
	edge of mathematics in the field	of differential and integral calculus		
(K_W2).				
The student should have knowle basic range (K_W3).	edge of physics, in particular me	chanics and thermodynamics, in the		
The student should have knowle first semester (K_W10, K_W12,	-	Fundamentals of Chemical Engineering,		

The student should be able to use specialist literature and draw conclusions on its basis (K_U1).

The student should be able to implement self-education (K_U24).

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

The student should understand the need for further training and raising their professional competences (K_K1).

Course objective

Mastering knowledge in the field of heat and mass transport. Use this knowledge to formulate and solve heat transfer and mass transfer problems.

Course-related learning outcomes

Knowledge

1. knowledge of heat transfer equation, diffusion equation, and solutions of these equations [K_W10]

2. knowledge of similarity theory and dimensional analysis in the field of heat and mass transport [K_W10]

- 3. knowledge of heat transport during boiling and condensation [K_W10]
- 4. knowledge of moist air thermodynamics [K_W10]
- 5. knowledge of filtration issues [K_W10]

Skills

- 1. ability to solve the heat conduction equation and diffusion equation [K_U14, K_U15]
- 2. ability to calculate and design heat and mass exchangers [K_U13, K_U17]
- 3. ability to use specialist literature on chemical and process engineering [KU_1]
- 4. self-education skill [K_U24]

Social competences

- 1. understands the need for self-education and raising their professional competences [K_K1]
- 2. is aware of compliance with ethical principles in the broad sense [K_K3, K_K8]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Completing project exercises based on the assessment of the ability to solve project tasks.

Completing lectures in the form of a written exam about mastering and understanding the whole material.

Programme content

The course presents heat and mass transport processes in the field related to pharmaceutical engineering. In particular, the following are discussed:

dimensionless differential equation of heat transport;

ways to increase the intensity of heat exchange;

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

two-dimensional heat conduction;

transient problems of heat transport (convective heating of the plate, heat conduction with a small Biot number)

similarity theory and dimensional analysis for heat transport in liquid (dimensionless numbers, correlation equations);

heat transfer by boiling and condensation;

heat exchangers.

As part of mass transport, the following are discussed:

parameters characterizing the mixture;

mass balance equation for a mixture (equation, mass flow definitions, average speed, barycentric speed);

mass transport mechanisms (diffusion, diffusion coefficients, mass convection);

diffusion equation (general form, special forms, solution conditions);

steady diffusion issues (equimolar and non-equimolar mutual diffusion, diffusion through an inert factor, diffusion chamber);

transient diffusion issues (diffusion in half space);

similarity theory and dimensional analysis for mass transport;

filtration (Darcy's law).

Teaching methods

lecture and computational design exercises

Bibliography

Basic

1. Z. Kembłowski, S. Michałowski, Cz. Strumiłło, R. Zarzycki, Podstawy teoretyczne inżynierii chemicznej i procesowej, Warszawa, PWN 1985.

2. Malczewski J., Piekarski M., Modele procesów transportu masy, pędu i energii, Warszawa, PWN 1992.

3. Zadania projektowe z inżynierii procesowej, Biń A., Huettner M., Kopeć J., Kozłowski M., Nowosielski J., Sieniutycz S., Szembek-Stoeger M., Szwast Z., Wolny A., Wyd. Politechniki Warszawskiej 1986.

4. J. Ciborowski, Inżynieria procesowa, Warszawa, WNT 1973.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 5. T. Hobler, Ruch ciepła i wymienniki, wyd. 4, Warszawa, PWN 1971.
- 6. S. Wiśniewski, T. Wiśniewski, Wymiana ciepła, WNT Warszawa 2000, Wyd. V.

Additional

1. S.J. Kowalski, Teoria procesów przepływowych cieplnych i dyfuzyjnych, Wydawnictwo Politechniki Poznańskiej, Wyd. 1999 oraz 2008;

2. K. Brodowicz, Teoria wymienników ciepła i masy, PWN-Warszawa, 1982;

Breakdown of average student's workload

	Hours	ECTS
Total workload	65	2,0
Classes requiring direct contact with the teacher	45	1,4
Student's own work (literature studies, preparation for classes,	20	0,6
preparation for exam, project preparation) ¹		

¹ delete or add other activities as appropriate